5. Top K frequent elements
The Top K Frequent Elements problem on LeetCode is a classic problem that asks you to return the k
most frequent elements in a given array of integers. Let’s go through solutions from brute force to optimal, focusing on different approaches with increasing efficiency.
Problem Statement
Input: An integer array nums
and an integer k
.
Output: Return the k
most frequent elements in the array.
Example:
Input: nums = [1,1,1,2,2,3]
, k = 2
Output: [1, 2]
Approach 1: Brute Force (O(n²))
Idea:
Count the frequency of each number by comparing each element with others in the array, and then pick the top k
elements.
Code (Brute Force)
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class TopKFrequentBruteForce {
public static List<Integer> topKFrequent(int[] nums, int k) {
List<Integer> result = new ArrayList<>();
List<Integer> visited = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
if (visited.contains(nums[i])) continue; // Skip already processed numbers
int count = 0;
for (int j = 0; j < nums.length; j++) {
if (nums[i] == nums[j]) count++;
}
visited.add(nums[i]);
result.add(nums[i] + ":" + count); // Just for debugging frequency
}
// Sort the result by frequency (using custom comparison logic)
result.sort((a, b) -> Integer.compare(Integer.valueOf(b.split(":")[1]), Integer.valueOf(a.split(":")[1])));
List<Integer> topK = new ArrayList<>();
for (int i = 0; i < k; i++) {
topK.add(Integer.valueOf(result.get(i).split(":")[0]));
}
return topK;
}
public static void main(String[] args) {
int[] nums = {1, 1, 1, 2, 2, 3};
int k = 2;
System.out.println(topKFrequent(nums, k)); // Output: [1, 2]
}
}
Time Complexity: O(n²)
- We are using a nested loop to count frequencies, leading to quadratic time complexity.
- This is inefficient for large inputs.
Approach 2: HashMap + Sorting (O(n log n))
Idea:
- Use a HashMap to count the frequency of each element in
nums
. - Sort the map by frequency and return the top
k
elements.
Code (HashMap + Sorting)
import java.util.*;
public class TopKFrequentSorting {
public static List<Integer> topKFrequent(int[] nums, int k) {
Map<Integer, Integer> freqMap = new HashMap<>();
// Step 1: Count the frequency of each element
for (int num : nums) {
freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
}
// Step 2: Sort map entries by frequency in descending order
List<Integer> result = new ArrayList<>(freqMap.keySet());
result.sort((a, b) -> freqMap.get(b) - freqMap.get(a));
// Step 3: Return the top k elements
return result.subList(0, k);
}
public static void main(String[] args) {
int[] nums = {1, 1, 1, 2, 2, 3};
int k = 2;
System.out.println(topKFrequent(nums, k)); // Output: [1, 2]
}
}
Time Complexity: O(n log n)
- Counting the frequencies takes O(n) time.
- Sorting the frequencies takes O(n log n) time.
Approach 3: HashMap + Min-Heap (O(n log k))
Idea:
- Use a HashMap to store the frequency of each element.
- Use a Min-Heap (Priority Queue) to store the top
k
elements based on their frequency. - Return the top
k
frequent elements by extracting from the heap.
Code (HashMap + Min-Heap)
import java.util.*;
public class TopKFrequentMinHeap {
public static List<Integer> topKFrequent(int[] nums, int k) {
Map<Integer, Integer> freqMap = new HashMap<>();
// Step 1: Count the frequency of each element
for (int num : nums) {
freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
}
// Step 2: Use a Min-Heap to store the top k elements
PriorityQueue<Integer> minHeap = new PriorityQueue<>((a, b) -> freqMap.get(a) - freqMap.get(b));
for (int num : freqMap.keySet()) {
minHeap.add(num);
if (minHeap.size() > k) {
minHeap.poll(); // Remove the least frequent element
}
}
// Step 3: Extract elements from the heap
List<Integer> result = new ArrayList<>();
while (!minHeap.isEmpty()) {
result.add(minHeap.poll());
}
Collections.reverse(result); // To get the elements in descending order
return result;
}
public static void main(String[] args) {
int[] nums = {1, 1, 1, 2, 2, 3};
int k = 2;
System.out.println(topKFrequent(nums, k)); // Output: [1, 2]
}
}
Time Complexity: O(n log k)
- Counting the frequencies takes O(n) time.
- Each insertion and deletion in the heap takes O(log k) time, making it optimal for large
n
and smallk
.
Approach 4: HashMap + Bucket Sort (O(n))
Idea:
Since the maximum frequency of any element can’t exceed n
, we can use bucket sort to sort elements by frequency in linear time.
Code (HashMap + Bucket Sort)
import java.util.*;
public class TopKFrequentBucketSort {
public static List<Integer> topKFrequent(int[] nums, int k) {
Map<Integer, Integer> freqMap = new HashMap<>();
// Step 1: Count the frequency of each element
for (int num : nums) {
freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
}
// Step 2: Create buckets (index = frequency)
List<Integer>[] buckets = new List[nums.length + 1];
for (int key : freqMap.keySet()) {
int frequency = freqMap.get(key);
if (buckets[frequency] == null) {
buckets[frequency] = new ArrayList<>();
}
buckets[frequency].add(key);
}
// Step 3: Collect top k frequent elements from buckets
List<Integer> result = new ArrayList<>();
for (int i = buckets.length - 1; i >= 0 && result.size() < k; i--) {
if (buckets[i] != null) {
result.addAll(buckets[i]);
}
}
return result.subList(0, k);
}
public static void main(String[] args) {
int[] nums = {1, 1, 1, 2, 2, 3};
int k = 2;
System.out.println(topKFrequent(nums, k)); // Output: [1, 2]
}
}
Time Complexity: O(n)
- Counting frequencies takes O(n).
- Bucket sort with fixed-size buckets takes O(n).